162^(3/4)=2x

Simple and best practice solution for 162^(3/4)=2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 162^(3/4)=2x equation:



162^(3/4)=2x
We move all terms to the left:
162^(3/4)-(2x)=0
We add all the numbers together, and all the variables
-2x+162^(+3/4)=0
We multiply all the terms by the denominator
-2x*4)+162^(+3=0
Wy multiply elements
-8x^2+3=0
a = -8; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-8)·3
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*-8}=\frac{0-4\sqrt{6}}{-16} =-\frac{4\sqrt{6}}{-16} =-\frac{\sqrt{6}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*-8}=\frac{0+4\sqrt{6}}{-16} =\frac{4\sqrt{6}}{-16} =\frac{\sqrt{6}}{-4} $

See similar equations:

| (t+3)0.55=40 | | 2/3y+4=5 | | x-9=x-11 | | -16+2x=-x+5 | | 7x+10=2x+155 | | 5/3m+2=21/2 | | 1/2x-1=3/8x-1 | | t^2+2=3t | | 36767c+7c=9c+6 | | 2x-23=-3x+12 | | -24-34+8=5y- | | 3x+1+1x=4x+1 | | 2(2/3x+2)=8 | | 14x+16=13x-9 | | -53=2-5x | | (3/2)x-2=4 | | 5/x=3/x+1 | | -2+2x=x+5 | | (-7.3+x)/9.2=0.739 | | 3.5+a=6.5 | | 4(6+4k)=12(k+5) | | 11x-74=4x+73 | | -8+-2=x+6 | | 63+9w=198 | | 2x2+12x-589=0 | | 14-(2x^2-3x)=0 | | 2m/5-3=m/2 | | 20=-16t2+64t+4 | | X2+4×-16y+20=0 | | -14+x=7-2x | | 8x+64+16x=32x | | 1/2x-0.5=3.6 |

Equations solver categories